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1 Introduction

We locate the onset of oscillatory instability in the flow in a differentially
heated cavity by computing a steady state and analyzing the stability of the
system. In the problem of natural convection in a cavity we consider the flow
in a box of width L and height H where the left vertical wall is held at constant
temperature that is the negative of the right. The symmetry of this problem is
important in considering the eigenvalues; we present analytical reasoning and
eigenvalue calculations that demonstrate why there are two modes that have
eigenvalues that are nearly identical. We emphasize that our method of linear
stability analysis can identify this phenomenon, while a transient calculation
would have difficulty predicting it.

The problem has been the subject of much research; we formulate the problem
so that it is similar to a study by Paolucci and Chenoweth (1989). We use
eigenvalue calculations to predict the onset of oscillations, where Paolucci
and Chenoweth find oscillatory solutions using time dependent calculations.
Paolucci and Chenoweth show that as the Rayleigh number is increased (based
on the ∆T and L), boundary layers develop on both vertical walls, and internal
waves near the corners cause the oscillations to develop. Janssen and Henkes
(1995), Xin and Le Quéré (1995), Xin et al. (1997), Le Quéré and Behnia
(1998), and Mayne et al. (2000, 2001) have conducted transient analyses of
this problem, considering various geometries. More recently Xin and Le Quéré
(2001) have conducted a linear stability analysis in a square cavity using a
direct method to solve the linear systems. While our work builds upon this
body of knowledge, we differ in that our method allows us to solve larger
systems and arbitrary geometries.

We achieve our computations by combining a general purpose massively paral-
lel unstructured grid finite element CFD code, MPSalsa (Shadid, 1999), with
an existing Arnoldi-based eigensolver, ARPACK, (Lehoucq et al., 1998) and a
parallel iterative linear solver using preconditioned Krylov methods package,
AZTEC (Tuminaro et al., 1999). MPSalsa discretizes the Navier-Stokes equa-
tions and applies Newton’s method to solve for the steady state. This is in
contrast to the standard approach of performing a transient calculation. While
tried-and-true, this latter approach does not allow the computation of unsta-
ble steady states. Our approach does detect these unstable steady states thus
allowing bifurcation analysis. Also in contrast to our approach, traditional cal-
culations of the stability of complicated flows are done in such a way that the
resulting linear systems can be solved using direct methods. Because our in-
terest is in discretized Navier-Stokes equations in general geometries that lead
to linear systems of order 104–107 for two and three dimensional problems,
direct methods (even sparse direct methods) for the linear solves or subspace
iteration for the eigensolve are not an option. We will demonstrate that paral-
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lel Krylov iterative methods can be reliably used for large-scale linear stability
analysis on massively parallel machines.

The problem of the flow in a differentially heated cavity both exhibits interest-
ing physical behavior and is suited for demonstrating our eigenvalue analysis
capabilities. Our Cayley transform method, as implemented in the LOCA sta-
bility analysis library (Salinger et al., 2002b), allows us to locate the onset
of oscillatory instabilities; in order to locate these instabilities it is necessary
to compute the eigenvalue of the system with largest real part (Meerbergen
and Spence, 1997). It remains an open problem in large-scale non-symmetric
eigenvalue calculations to reliably verify that the rightmost eigenvalue has
been computed. Without that result, those scientists and engineers interested
in computing linear stability require a variety of analysis tools; here we present
a Cayley transform method that we have found effective in finding the right-
most eigenvalue when the imaginary part of that eigenvalue is large. One of the
goals of this paper is to convince the reader of the reliability and applicability
of this method to other problems of this type.

We have chosen to focus on the advectively dominated problem of the flow in
a differentially heated cavity of aspect ratio H

L
= 2. Advectively dominated

flows are characterized by eigenvalues that have a large imaginary part relative
to the real part. This can result in two computational difficulties. First, it can
be difficult to compute the eigenvalues of the discretized system. Our choice of
Cayley transform along with the use of an Arnoldi-based algorithm proves to
be a reliable method to overcome this difficulty. The second difficulty is that
we may need to discretize the Navier-Stokes equations on a highly resolved
mesh so that the real part of the eigenvalues will approximate those of the
continuous system.

The performance of our code on this problem demonstrates that we do need
fine meshes to accurately compute converged real parts of the eigenvalues of
interest. We will show that this is due to discretization errors, not to a failure of
the eigensolver to compute the correct eigenvalues. In fact, we emphasize that
the eigensolver handles with ease the large systems we are studying. Because
the limitation lies in the discretization, we claim that a transient finite element
code would have the same difficulty accurately computing these flows.

We validate our results by comparing the calculations to published results
involving time dependent numerical calculations. In addition, we verify our
results via mesh refinement for the finite element discretization and by check-
ing the residual accuracy of our computed eigenvalues and linear systems.

Our approach is as reliable as calculations accomplished with transient meth-
ods; our approach is more efficient because we use a Krylov subspace method
and use a frozen Jacobian, so we avoid the non-linear solve made at every time
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step by a transient calculation. While we can not guarantee that our approach
will reliable locate all instabilities because of the need to intelligently pick the
parameters in the Cayley transformation, we assert that this is the same risk
associated with choosing the time step and integration time when detecting
instabilities through time integration. Moreover, our approach also provides
qualitative information on the fluid flow not otherwise available. As we show,
the information from the eigensolver can readily be used to track instabilities
in parameter space and to locate higher codimension bifurcations.

We organize our paper as outlined: In Section 2 we introduce our formulation
of the problem of the flow in a differentially heated cavity that provides the nu-
merical example for our study. We also state the Navier-Stokes equations with
the Boussinesq approximation governing the motion of the flow and present a
novel result regarding the symmetry of the problem and the resulting nearly
identical eigenvalues. In Section 3 we discuss the finite element code MPSalsa,
the Cayley transform as implemented in the LOCA library, the choice of Cay-
ley parameters and the Arnoldi-based eigenvalue package ARPACK. Section 4
gives linear stability analysis results for convection differentially heated cavity,
including comparisons with published results and mesh resolution studies. In
Section 5 we highlight some of the numerical issues that arise in the linear sta-
bility analysis. Section 6 presents results of tracking instabilities as a function
of the Prandlt number, including the detection of a codimension 2 bifurcation.
Section 7 summarizes our findings.

2 Problem formulation

In this section we describe the problem of convection in a two dimensional
vertical cavity and give the basic equations that govern our flow. We present
the novel result that due to the symmetry of the problem we have a pair of
nearly identical eigenvalues.

2.1 The problem of flow in a differentially heated cavity

We consider the flow in a cavity of width L and height H. The left vertical
wall is held at a constant temperature −∆T/2, and the right vertical wall is
held at the temperature ∆T/2. We impose no-flux boundary conditions at the
horizontal walls and no-slip boundary conditions on all walls.

We solve the Navier-Stokes equations with the Boussinesq approximation for
the flow of a thermally driven incompressible fluid:
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∂u

∂t
+ u · ∇u +

1

ρ
∇p = ν∇2u + gβ(T − Tref )eg (1)

∂T

∂t
+ u · ∇T = κ∇2T (2)

∇ · u= 0 (3)

where u = uex+vey+wez, p and T are the velocity, pressure and temperature;
ρ, ν and κ are the density, kinematic viscosity and thermal diffusivity; g and
β are the acceleration of gravity and the thermal expansion coefficient of the
fluid. The vector eg is a unit vector in the direction of the gravity vector.
The Boussinesq approximation assumes that the temperatures T are all close
enough to an average temperature Tref that we can ignore the variations in
density in all terms in the equations except for the forcing term due to gravity.
In these equations we subtract the hydrostatic part of the pressure.

The boundary conditions zero velocities on all four walls, adiabatic Neumann
conditions on the top and bottom walls for the heat equations, and Dirichlet
temperatures on the side walls:

T (−L

2
, y) =

∆T

2
, and T (

L

2
, y) = −∆T

2
.

Other than the physical constants appearing in the equations, the only pa-
rameters appearing in our problem are the temperature difference ∆T , the
characteristic geometrical length L, and the geometrical aspect ratio. The
dimensionless parameters that result from the parameters are the Rayleigh
number,

Ra =
gβ∆TL3

κν
,

and the Prandtl number,

Pr =
ν

κ
.

We achieve the desired Rayleigh and Prandtl numbers by selecting ρ = L =
∆T = 1, g = Pr× 101, ν = Pr× 10−3 and κ = 1× 10−3. We then control the
Rayleigh number using Ra = β × 107.

2.2 Symmetry and near-degeneracy of the eigenvalues

Because the right vertical wall is held at a temperature that is the negative of
the left vertical wall, the governing equations are invariant under the following
symmetry transformations:

Rz(x) =



−T (−x)
−u(−x)
p(−x)


 (4)

5



where we are representing our solution in the form

z(x) =




T (x)
u(x)
p(x)


 .

If z(x) is a solution to our equations, then so is Rz(x). However, it is not
necessary that solutions to our equations satisfy Rz(x) = z(x).

We are analyzing the stability of symmetric solutions, so all eigenfunctions will
either be symmetric or anti-symmetric. Any simple eigenfunction will either
satisfy Rφ(x) = φ(x) or Rφ(x) = −φ(x). Symmetry can only be broken
through a bifurcation, so that a solution that is initially symmetric will stay
symmetric as we vary a parameter unless we encounter a bifurcation point.

When our system goes unstable, the internal waves will either oscillate in
a symmetric manner or in an anti-symmetric manner. Physically we expect
that if the walls are well separated, then the fluid on the left should be able
to oscillate independently of the fluid on the right. In order for this to be
so, we would have to be able to construct eigenfunctions where the fluid on
the left oscillates but that on the right does not. The only way to do this
is if we have multiple eigenvalues, with one symmetric eigenvector and the
other anti-symmetric. This is not quite what occurs because the two sides
are not completely separated, but we almost get this. Hence we have two
eigenvalues that are almost identical to each other. This result is borne out in
our eigenvalue calculations, presented in Section 4.

3 Methodology

In this section we discuss the numerical methods used by MPSalsa to locate
steady state solutions of Equations (1)–(3), the formulation of the eigenvalue
problem and our Cayley transform method, and the numerical solution of the
eigenvalue problem.

3.1 Spatial discretization and the non-linear solve

A full description of the numerical methods in MPSalsa used to locate steady
state solutions of Equations (1)–(3) is available in (Shadid, 1999) and the
references listed therein. A brief overview is presented in this section.

A mesh of quadrilaterals for 2D problems and hexahedra for 3D problems is
generated to cover the domain. Although the code allows for general unstruc-
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tured meshes, the problem in this paper uses structured meshes. For parallel
runs, the mesh is partitioned using the Chaco code (Hendrickson and Leland,
1995) in a way that will distribute work evenly while minimizing communica-
tion costs between processors. A Galerkin/least-squares finite element method
(Hughes et al., 1989) (GLS-FEM) is used to discretize the time-invariant ver-
sions of the governing partial differential equations (1)–(3) into a set of nonlin-
ear algebraic equations. This formulation includes a pressure stabilization term
so that the velocity components, temperature and pressure fields can all be
represented with equal order nodal basis functions. GLS-FEM is a consistent
stabilized scheme because when the exact solution is inserted, the Boussinesq
equations are satisfied exactly. We use bilinear and trilinear nodal elements
for two and three dimensional problems, respectively.

Discretization of (1)–(3) results in the matrix equation

(
M 0
N 0

) [
u̇
ṗ

]
+

(
Ku,T + C(u) −D

DT + G Kp

) [
u
p

]
−

[
g
h

]
=

[
0
0

]
(5)

where u is the vector of fluid velocity components and temperature unknowns,
p is the pressure, M is the symmetric positive definite matrix of the overlaps of
the finite element basis functions, Ku,T is the stiffness matrix associated with
velocity and temperature, C(u) is the nonlinear convection, D is the discrete
(weak) gradient, DT is the discrete (weak) divergence operator and Kp is the
stiffness matrix for the pressure. G,Kp,N are stabilization terms arising from
the GLS-FEM. The vectors g and h denote terms due to boundary conditions
and the Boussinesq approximation.

The resulting nonlinear algebraic equations arising from setting the time deriva-
tive terms to zero are solved using a fully coupled Newton-Raphson method
(Shadid et al., 1997). An analytic Jacobian matrix for the entire system is cal-
culated and stored in a sparse matrix storage format. At each Newton-Raphson
iteration, the linear system is solved using the Aztec package (Tuminaro et al.,
1999) of parallel preconditioned Krylov iterative solvers. The accuracy of the
steady state solve is set by the following stopping criterion,


 1

N

N∑

i=1

( |δi|
εR|xi|+ εA

)2



1
2

< 1.0, (6)

where εR and εA are the relative and absolute tolerances desired, δi is the
update for the unknown xi and N is the total number of unknowns. We use
relative and absolute tolerances of 10−5 and 10−8, respectively, for this study.
In Aztec we exclusively use an unrestarted GMRES iteration with a non-
overlapping Schwarz preconditioner where an ILU preconditioner is used on
each sub-domain (each processor contains one sub-domain). These methods
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enable rapid convergence to both stable and unstable steady state solutions.
The scalability of these methods to large system sizes and numbers of proces-
sors is demonstrated by the solution of a 16 million unknown model on 2048
processors (Burroughs et al., 2001).

3.2 The discretized eigenvalue problem and Cayley transforms

The GLS-FEM results in a spatial discretization of the Navier-Stokes equa-
tions with the Boussinesq approximation. This leads to a finite dimensional
system of differential algebraic equations of the form

Bẋ = F(x), x(0) = x0, (7)

where the matrix B is singular (due to the divergence free constraint) and x is
a vector containing the nodal values of the velocities, temperature and pressure
at the nodes of the finite element mesh. Because of the stabilization terms in
the GLS discretization, B, the matrix associated with the time derivative term
in (5), is a non-symmetric matrix.

One can determine the stability of a steady state solution xs of F(xs) =
0 in one of two ways: by solving the generalized eigenvalue problem that
results from the linearization of (7) about the steady state, or by using a time
integration scheme.

The first approach solves the generalized eigenvalue problem

λBz = J(xs)z ≡ Jz. (8)

that arises from the linearization of (7) about the steady state. The matrix
J(xs) is the Jacobian of F(·) linearized about xs. We assume that the eigen-
values are ordered with respect to decreasing real part; real(λi+1) ≤ real(λi).
If all the eigenvalues of (8) have negative real parts, the steady state is stable.

We use a Cayley transform so that we find the eigenvalues γi of the system

(J− σB)−1(J− µB)z = γz

that are related to the eigenvalues λk of (8) via

γi =
λk − µ

λk − σ
i = 1, . . . , n; k = 1, . . . , n

We choose σ > 0 and µ = −σ; we choose the value of σ so that it is of similar
magnitude to the imaginary part of the eigenvalue of interest, and so that
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σ > Re(λ1). This transformation has the property of mapping a λ in the right
half of the complex plane (i.e. an unstable mode) to a γ outside the unit circle,
and those on the left halfplane (i.e. a stable mode) to a γ inside the unit circle.
That is,

real(λ) > 0 =⇒ ‖γ‖ > 1.0, and real(λ) < 0 =⇒ ‖γ‖ < 1.0.

Since Arnoldi’s method will converge more rapidly to those eigenvalues with
larger magnitudes, this is a very desirable property for calculating eigenvalues
for use in linear stability analysis.

The use of preconditioned Krylov methods for both the eigenvalue problem
and ensuing linear solves for large-scale two and three dimensional prob-
lems is not generally undertaken. The results of our paper will show that
we have found success in this method. The computation of eigenvalues of the
linearized steady state has received much attention in the last fifteen years
(Christodoulou and Scriven, 1988; Cliffe et al., 1993; Edwards et al., 1994;
Mittelmann et al., 1994; Fortin et al., 1997; van Dorsselaer, 1997; Morzyńki
et al., 1999; Tukerman et al., 2000; Lehoucq and Salinger, 2001). The con-
sensus of this research is to convert the generalized eigenvalue problem (8)
into a standard eigenvalue problem and then solve the resulting set of linear
equations during each iteration of the eigensolver. Most of the authors of these
papers then solve the eigenvalue problem using inverse subspace iteration or
Arnoldi’s method with a sparse direct method for the resulting linear set of
equations (Christodoulou and Scriven, 1988; Cliffe et al., 1993; Fortin et al.,
1997; Morzyńki et al., 1999; van Dorsselaer, 1997; Mittelmann et al., 1994).
This typically limits the linear stability analysis to two dimensional prob-
lems. It is not clear at the outset that our approach will be successful; our
approach of using Cayley transforms to reduce (8) to a standard eigenvalue
problem leads Fortin et al. (1997, p.1189) to state that all such “variants that
we tested failed.” On the contrary, we have found success with this method,
and in fact find that the eigensolver performs with ease on our large (order
105–107) systems.

The second approach to computing the stability of a steady state is to use a
time integration scheme; standard time integration schemes typically perform
a nonlinear solve (due to convection) at every time step. We can think of these
as computing an iteration of the form

xn+1 = G(xn). (9)

The iteration is initialized with an iterate near the steady state and if the
iteration converges towards the fixed point xs, then the steady state is declared
stable. If x0 is an initial condition for (9), then the convergence and numerical
stability of the fixed point iteration is determined by the spectral radius of
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the Jacobian of G(·). In particular, denote the eigenvalues of Gx(x0) by γi

ordered so that |γi+1| ≤ |γi|.

A popular time integration scheme is given by the trapezoidal rule and results
in the iteration

xn+1 = G(xn) =

(
B− 4t

2
J

)−1 (
B +

4t

2
J

)
xn (10)

where the Jacobian is “frozen” at the steady state. The eigenvalues γi and λi

are related via

γi = −λk + 2
4t

λk − 2
4t

i = 1, . . . , n; k = 1, . . . , n

and so, in principle, the eigenvalues of (8) can be determined by computing
those of

− (J− σB)−1 (J− µB) z ≡ Gz = −γz

where µ = −σ = 2/4t. Note that this is the same as our choice of Cayley
transform with µ = −σ = 2/4t.

The above discussion demonstrates that at a steady state, time integration
and computing the eigenvalues of (8) are intimately related when a frozen
Jacobian approximation is employed. We remark that although large-scale
eigensolvers (subspace iteration or Arnoldi’s method) favor the computation of
those eigenvalues largest in magnitude, these may not be the desired rightmost
eigenvalues This occurs when the flow is advectively dominated. Our choice
of a Cayley transform allows us to overcome this difficulty.

We now explain why Arnoldi’s method for the eigenvalue solvers is preferred
to the typically undertaken transient calculation. A transient calculation (with
the linearized Jacobian J) or fixed point iteration is equivalent to the power
method on G. The rate of convergence to the eigenvector associated with γ1

is |γ2/γ1|. The rate of convergence improves to |γm+1/γ1| if the power method
is replaced by subspace iteration on m vectors. However, the resulting rate of
convergence can be intolerable. The rate of convergence to γ1, γ2, . . . , γr may
be dramatically improved by projecting G onto the column space of

x0,x1, · · · ,xm.

Arnoldi’s method (Arnoldi, 1951) iteratively determines an orthogonal basis
for the above column space that by definition is a Krylov subspace.
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3.3 Arnoldi’s method and the numerical solution of the eigenvalue
problem

The remainder of the section reviews several issues with the use of Arnoldi’s
method for the numerical solution of the eigenvalue problem. We use the paral-
lel implementation P ARPACK (Maschhoff and Sorensen, 1996) of ARPACK
(Lehoucq et al., 1998) for computing the eigenvalues of (8) via Cayley trans-
forms. We refer the reader to (Lehoucq and Salinger, 2001) for information
regarding the use of ARPACK for problems in linear stability analysis.

We discuss the selection of the Cayley parameters σ and µ. There are two
strategies by which we can choose the Cayley parameters. The first strat-
egy was presented in the previous subsection and draws upon a connection
with the trapezoidal rule in fixed point iteration. This is the strategy we em-
ploy in this study; we will discuss the implications of this choice in Section
5. The second strategy was presented by Lehoucq and Salinger (2001); the
Cayley parameters are selected λ1 < σ < µ so that the condition number of
(J−σB)−1(J−µB) is bounded and so can be efficiently solved with precondi-
tioned Krylov methods. This second strategy tends to be more efficient than
the first strategy for finding eigenvalues with zero or small imaginary parts;
however, it is not as reliable. (Nor is there a relationship with a common fixed
point iteration scheme for determining the stability of the steady state. The
analogous time-stepper is unconditionally unstable for all modes.) The lack of
reliability manifests itself when the flow is advectively dominated so that the
rightmost λ’s do not correspond to the largest in magnitude γ’s. We remark
that we encountered this unreliability in the solution of the problem of the
secondary bifurcation from steady rolls into oscillatory rolls in the Rayleigh-
Bénard problem, discussed in Burroughs et al. (2001): the first strategy finds
the eigenvalues of interest where the second does not.

We briefly overview several salient issues. Further details are available in the
discussion of the numerical experiments performed in Section 4 and Section
5, and in the paper (Lehoucq and Salinger, 2001).

(1) The numerical solution of the linear system resulting from using a Cay-
ley transform is found by exclusively using an unrestarted GMRES it-
eration with a non-overlapping Schwarz preconditioner where an ILU
preconditioner is used on each sub-domain (each processor contains one
sub-domain).

(2) We must choose the size of the Arnoldi space m (needed by ARPACK).
Our findings, in general, are that for the most difficult problems m was
never larger than 160 and 80 was typically more than adequate. We re-
mark that although ARPACK does provide a capability to restart the
Arnoldi iteration, our experiments did not use this capability. Instead,
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our focus is to examine the use of preconditioned Krylov methods for
linear stability analysis.

(3) The tolerance needed by the GMRES iteration and ARPACK and their
relationship was studied in (Lehoucq and Salinger, 2001), and adjusts
automatically to the scaling of the problem. In general, these tolerances
were no larger than 10−6 and no smaller 10−9.

(4) Since the Boussinesq equations (1)–(3) model an incompressible fluid, the
starting vector for ARPACK is selected as J−1Bw, where w is a random
vector. The resulting vector is divergence free (Meerbergen and Spence,
1997).

(5) The P ARPACK subroutines pdnaupd and pdneupd were modified to
implement the Cayley transform and an improved check for termination.
The eigensolve is terminated when λ1, λ2, . . . , λr and corresponding ap-
proximate eigenvectors for a user specified r satisfy the residual tolerance.
This code is available through the LOCA library (Salinger et al., 2002b).

4 Results of convection in a differentially heated cavity

We conduct our numerical experiments at a Prandtl number of .71 and with
H = 2 and L = 1 in order to compare our results to those of Paolucci and
Chenoweth (1989). We validate our results through comparison to the numeri-
cal solutions of Paolucci and Chenoweth and verify our results by tracking the
residual accuracy of our computed eigenvalues and linear systems and through
a study of convergence as we refine the finite element mesh.

Although Paolucci and Chenoweth did not make the Boussinesq approxima-
tion in their calculations, they purposely used conditions that are well ap-
proximated by the Boussinesq approximation. In particular, ∆T/TAV = .01
where ∆T is the difference between the wall temperatures and TAV is the
average of the wall temperatures. When A = H/L = 2 they found an at a
Rayleigh number of approximately Ra = 3 × 107 with a dimensionless fre-
quency of f = 173.2. (Because we do not make our equations dimensionless
in the same way, to compare the frequencies fPC reported in Paolucci and
Chenoweth to the imaginary part of our computed eigenvalues we look at
ω = fPC × 2π/1000.)

We solve on quadrilateral finite element meshes with bilinear basis functions
of 40×80, 80×160, 160×320, 320×640 and 640×1280. The spacing between
the mesh points increases exponentially as we move away from the walls, with
the points in the middle of the box having mesh spacings about 20 times as
large as those near the walls.

For the finest mesh, we have 3,284,484 unknowns and solve on 256 processors
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Table I
The eigenvalues for convection in a cavity with mesh 160× 320. Note that ω1 & ω2

are based on the frequencies reported by Paolucci and Chenoweth (1989) and are
available for comparison for the two Rayleigh numbers 3.0× 107 and 2.0× 107

Ra(107) ω1 ω2 λ1 λ2 λ3

3.0 1.088 0.3295 ± 1.097i 0.3259 ± 1.099i 0.0961 ± 12.14i
2.75 0.2678 ± 1.056i 0.2634 ± 1.0574i 0.0474 ± 11.44i
2.5 0.1937 ± 1.010i 0.1884 ± 1.012i -0.0017 ± 10.73i
2.25 0.1067 ± 0.9584i 0.1001 ± 0.9628i -0.0479 ± 9.997i
2.0 2.316 0.0138 ± 0.8946i 0.0001 ± 0.9081i -0.0681 ± 2.338i
1.75 -0.0631 ± 0.8143i -0.0649 -0.0757 ± 2.177i

of the Sandia-Intel TFlop machine (ASCI Red) with 333 MHz Pentium pro-
cessors. On this final mesh it is somewhat difficult to achieve convergence to
the steady state solution; we rely on continuation to find the steady state at
the desired Rayleigh numbers. The number of GMRES solves for each eigen-
solver iteration is approximately 200. The time to compute eigenvalues for the
finest mesh is 6 hours for Ra = 3.0×107. We set the Cayley parameters σ = 5,
µ = −5 and the Arnoldi size to 160.

Table I shows the eigenvalues for the 160× 320 mesh and how they compare
with the results of Paolucci and Chenoweth. Paolucci and Chenoweth per-
formed calculations at Rayleigh numbers of 3 × 107 and 2 × 107 for A = 2.0.
The frequency they report at Ra = 3 × 107 is in excellent agreement with
the frequency predicted by our eigenvalue calculation (1.088 vs. 1.097). When
Ra = 2× 107 we still get good agreement (2.316 vs. 2.338), but the frequency
they report agrees with what we calculate to be the third mode. While they
report the flow as being stable, our eigenvalue calculations report that the
flow is unstable because of first two modes have positive real parts. Possible
explanations for why the previous work may have missed this mode include
that the ungraded mesh used for this data point (generated with the comput-
ing power available 14 years ago) may not have fully resolved the flow, or that
the starting point for the transient calculation did not contain a significant
contribution in the direction of this instability (which is very close to being
neutrally stable).

In order to see how the steady state solution converges with mesh refinement
we have included Table II. This table shows the three most unstable eigen-
values and the maximum value of the x-velocity calculated with our various
meshes. We are clearly getting convergence, but the convergence of the maxi-
mum x-velocity with mesh is somewhat slow and clearly is no better than the
convergence with mesh of the eigenvalues.

We see slow convergence towards the real parts of the most unstable eigen-
value. (Other test problems we have studied that are not strongly advectively
dominated flows show quadratic convergence rates (Burroughs et al., 2001).)
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Table II
Eigenvalues and maximum computed values for the velocity in the problem of the
onset of convection in a heated cavity with Ra = 3.0 × 107 with varying mesh
resolution of N × 2N .
N λ1 λ2 λ3 x-velocity coordinates
40 0.3217 ± 1.020i 0.3192 ± 1.020i -0.0778 ± 2.856i 0.8054 (0.119, 1.97)
80 0.3326 ± 1.091i 0.3294 ± 1.092i -0.0003 ± 11.98i 0.7993 (0.129, 1.97)
160 0.3295 ± 1.097i 0.3295 ± 1.099i 0.0961 ± 12.14i 0.8032 (0.124, 1.97)
320 0.3275 ± 1.096i 0.3238 ± 1.098i 0.1040 ± 12.19i 0.8048 (0.124, 1.97)
640 0.3267 ± 1.096i 0.3231 ± 1.097i 0.1039 ± 12.20i 0.8052 (0.122, 1.97)

We believe that this problem demonstrates the limitations of looking for grid
independence with a linear basis functions, particularly for highly advective
flows. However, we note that the difficulties are with the resolution of the
discretization and not in solving the eigenvalue problem. We emphasize that
a transient solution is not any more reliable than the eigenvalue computa-
tions, and that in fact our eigensolver encounters no trouble in this 3 million
unknown system. We also note that this problem is two dimensional; if we
were trying to achieve the same resolution on a three dimensional problem,
we would have billions of unknowns.

5 Numerical issues

Because we use parallel preconditioned Krylov iterative methods for the eigen-
value problem and resulting linear sets of equations, our results are obtained
by specifying the values of certain adjustable parameters: we need to specify
the Cayley parameters σ and µ and the size of the Arnoldi space. We briefly
review our verification procedures used for our numerical experiments; as sev-
eral issues have been discussed in a previous paper, which used the same CFD
Code, MPSalsa, and eigensolver, P ARPACK, but a different Cayley method,
the reader is referred to (Lehoucq and Salinger, 2001) for information regard-
ing details of linear algebra tolerances. Our main emphasis in this section is
to illustrate how sensitive our results are to the Cayley parameters.

Denote by λc and zc the approximations to an eigenvalue and eigenvector of
(8). We verify these approximations by computing the norm of the residual

Direct Residual =
||Jzc − λcBzc||

||Bzc|| , (11)

where || · || is the Euclidean norm of a vector. These errors only vanish when
λc and zc are an eigenpair for (8). Note that these measures are independent
of the scaling of zc.
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We now discuss the Cayley parameters and the size m of the Arnoldi space
used by ARPACK. These two parameters are related because if one chooses
the Cayley parameters poorly, a large Arnoldi space will be required to obtain
accurate eigenvalues. Our experience dictates that it is best to choose the
Cayley parameters so that they are of the same order of the imaginary part of
the most unstable eigenvalue. We believe that this is a reasonable assumption
because the user typically has some idea of the location of the imaginary part
of the most unstable eigenvalue. For example, this information is available if we
are solving a problem that is a small variation of a problem that has already
been solved, or if we have access to related experimental or computational
results. This is a drawback to the method if there is no prior evidence regarding
the size of the imaginary portion of the most unstable eigenvalue. However,
this is the same issue as choosing a time step size for transient runs that is
not so large as to step over oscillations, or a total time that is too small to
sense the oscillations.

Table III shows the errors in the most unstable eigenvalue of the onset of con-
vection in a differentially heated cavity as a function of the Cayley parameters
and the size of the Arnoldi space. These calculations were accomplished with
a 160× 320 mesh and a Rayleigh number of 3.0× 107. We see that changing
the Cayley parameters from ±1 to ±0.5 or ±5 does not significantly degrade
the performance of the algorithm. By the time the Cayley parameters are ±20
we are seeing some degradation in the algorithm, but we are still getting quite
good convergence after 160 iterations. Choosing the Cayley parameters too
large is the same as integrating in time with too small a time step; it requires
more Arnoldi iterations (time steps) to detect an oscillation. Notice also that
we sometimes misidentify the most unstable eigenvalue; looking at the error,
though, we see that this misidentified eigenvalue has not converged to a rea-
sonable tolerance. In these situations increasing the size of the Arnoldi space
allows us to compute the eigenvalues more accurately.

The accuracy of all of these calculations can also be limited by the accuracy
to which we solve our linear systems at each Arnoldi iteration. For example,
in Table III we do not get appreciably better results by using an Arnoldi space
of size 160 instead of 80. In general, to improve the accuracy of our eigenvalue
calculations we must either increase the size of the Arnoldi space or choose
a better value for µ = −σ, or decrease the tolerance to which we solve our
linear systems. We should note, however, that these eigenvalue calculations
are already highly converged. Even those with residuals near 10−4 instead of
below 10−7 were getting the eigenvalues correct to 3 digits. A comparison to
the mesh convergence results in Table II indicate that the limiting factor in
predicting the eigenvalues to the real PDE system is more likely to be the
discretization then the eigensolver.
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Table III
The effect of Arnoldi size and Cayley parameters on the problem of convection in
a differentially heated cavity. These results are for the most unstable eigenvalue at
Ra = 3.0× 107 and a grid of 160× 320. In the case where the eigenvalue of interest,
0.3295 ± 1.097i, is not identified as the most unstable eigenvalue, we have listed
both eigenvalues.

σ = −µ Arnoldi Size Eigenvalue Direct Residual
0.5

40 0.3295 ± 1.097i 5.063 ×10−8

80 0.3295 ± 1.097i 4.564 ×10−8

160 0.3295 ± 1.097i 4.564 ×10−8

1
40 0.3295 ± 1.097i 2.597 ×10−8

80 0.4774 ± 13.03i 8.685 ×100

0.3295 ± 1.097i 2.904 ×10−8

160 0.8677 ± 17.39i 7.885 ×100

0.3295 ± 1.097i 2.904 ×10−8

200 0.3295 ± 1.097i 2.904 ×10−8

5
40 0.5761 ± 12.98i 3.726 ×10−1

0.3295 ± 1.097i 7.769 ×10−5

80 0.3295 ± 1.097i 2.448 ×10−7

160 0.3295 ± 1.097i 7.281 ×10−8

20
40 0.6094 ± 17.35i 3.056 ×10−1

0.4343 ± 20.11 i 4.553 ×10−1

0.2769 ± 1.060i 4.801 ×10−2

80 0.3272 ± 1.096i 2.256 ×10−4

160 0.3300 ± 1.098i 8.196 ×10−5

6 Results of tracking Hopf bifurcations

The method of determining solution stability through eigenvalue calculations
of steady solutions lends itself to the use of bifurcation tracking algorithms. In
this section we show how these combined capabilities can be used to provide
considerable insight into the stability picture for the model problem for flow
in a differentially heated cavity of aspect ratio 2.

The results in Table I indicate that, with the 160 × 320 mesh, the first in-
stability for a fluid with Pr = 0.71 occurs for 1.75 × 107 < Ra < 2.0 × 107.
Using the solution vector, eigenvector, and imaginary part of the eigenvalue at
Ra = 2.0× 107, we invoked the Hopf bifurcation tracking algorithm in LOCA
(Salinger et al., 2002b) and previously used in Salinger et al. (2002a). This
algorithm uses a Newton algorithm to directly solve for the Hopf bifurcation
and requires a good initial guess as supplied by the eigensolver.
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Fig. 1. The tracking of four Hopf bifurcations as a function of the Prandlt number
shows that the IA mode goes unstable at the lowest Ra until Pr = 0.681, at which
time the WA mode is the first to go unstable. These modes are both shown in
Figure 3. (The dotted line extensions to the WA and WS branches were added to
clarify that these branches will continue to lower values of Pr, but these parts have
not been calculated.)

The Hopf tracking algorithm located the first instability, which we will term
IA, at Ra = 1.9608 × 107 and the second, IS, at Ra = 1.9997 × 107. Visu-
alization of the eigenmodes shows that the first mode is anti-symmetric with
respect to the symmetry of the equations, as shown in Equation 4, while the
second is the symmetric version of the same physical mode.

We became curious about how persistent was the phenomenon that the anti-
symmetric mode is the first to lose stability as a function another system
parameter. We tracked the Rayleigh number where the Hopf bifurcation occurs
as a function of the Prandlt number. We did not find a change in the order
of instability as we increased up to Pr = 1.3. However, when decreasing the
Prandlt number to generate the IA and IS curves in Figure 1, we found that
the curves cross at Pr = 0.6368 and Ra = 2.908× 107, indicating that indeed
the symmetric mode becomes more unstable then the anti-symmetric mode
for Prandlt numbers in the neighborhood below that.

However, verification of this double-Hopf bifurcation with the eigensolver led
to the discovery of two other complex pairs of eigenvalues with positive real
parts. Further computations produced the curves labeled WA and WS in Fig-
ure 1. These modes are the anti-symmetric and symmetric versions of the wall
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Fig. 2. This plot shows the steady solution where it loses stability with respect to
two modes, at the codimension 2 bifurcation where the IA and WA branches cross
in Figure 1. Velocity vectors and temperature contours are shown for this symmetric
solution.

mode described by Paolucci and Chenoweth (1989). We can see graphically
that a codimension 2 bifurcation occurs near Pr = 0.681 and Ra = 2.22×107.
At this Prandlt number there is a switch between whether the IA or WA
mode is the first to go unstable. Figure 2 shows a visualization of the base
flow and temperature contours at this point, and Figure 3 shows the temper-
ature profiles for both modes that go unstable at this point. Since these are
oscillatory instabilities, both the real and imaginary part of the eigenvectors
are visualized for each mode.

As the two wall modes continue to lower Prandlt numbers, they also appear
to cross. At this point, convergence was lost for the anti-symmetric mode.
One interesting point is that this crossing of branches WA and WS occurs
where the frequencies appear to be equal, while this was not the case when the
IAand IS modes cross. This added degeneracy could be responsible for the
difficulties in convergence. Since investigating this new phenomenon and it’s
interactions with the robustness of the Hopf tracking algorithm is far outside
the scope of this paper, the matter was not pursued.
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Fig. 3. The modes of instability at the codimension 2 bifurcation are visualized.
Temperature contours for the real and imaginary components of the anti-symmetric
interior mode IA are shown on top, and those for the anti-symmetric wall mode
WA are shown on the bottom.
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7 Conclusions

We have completed a linear stability analysis on the problem of the flow in a
differentially heated cavity. We have identified the frequency of the oscillatory
instability for various Rayleigh numbers for an aspect ratio of 2 and a Prandtl
number of 0.71. The frequency we identify at Ra = 3.0 × 107 is in excellent
agreement with prior published results, but for Ra = 2.0 × 107 we find two
modes more unstable than that found by Paolucci and Chenoweth (1989), and
the frequency of the third most unstable mode corresponds to their published
result. We also present an argument that the first two most unstable modes
will have eigenvalues that are nearly identical, and our eigenvalue calculations
demonstrate this is the case.

We have demonstrated both the capabilities and the limitations of using a gen-
eral purpose finite element code and eigensolver for fluid stability calculations.
Our interest is in large problems in possibly complex geometries where it is
necessary to use iterative methods for the linear algebraic calculations. Our
method has proved to be reliable in identifying the most unstable eigenvalue
in advectively dominated flows because of our choice of Cayley transforms em-
ployed. The limitation of our method is that it is computationally intensive
to reach high levels convergence with a low order finite element discretization.
We do not believe that our eigenvalue techniques have reached any inherent
limitation.

In flows that are advectively dominated, computing stability using either an
eigensolver or transient calculations will produce the same difficulties in that
they will require a fine discretization of the finite element mesh. We maintain
that our results are as reliable as those obtained using transient integration,
but that our results are more efficiently computed because we use a Krylov
subspace method instead of the power method, and because we use a frozen
Jacobian. We believe that our use of preconditioned Krylov iterative methods
were successful because of the high quality and robust implementation of these
algorithms, ARPACK and Aztec.

The determining of stability through calculation of steady states and leading
eigenvalues and eigenvectors lends itself well to using bifurcation tracking al-
gorithms. We have shown the power of using these complementary techniques
by uncovering the stability behavior for a range of Prandlt number. A codi-
mension 2 bifurcation representing the exchange of initial instability between
interior and wall modes was found to exist with just a 5% decrease in the
Prandlt number from the conditions previously studied.
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Morzyńki, M., Afanasiev, K. and Thiele, F. (1999), “Solution of the eigen-
value problems resulting from global non-parallel flow stability analysis”,
Computer Methods in Applied Mechanics and Engineering, Vol. 169, pp.
161–176

Paolucci, S. and Chenoweth, D. R. (1989), “Transition to chaos in a differ-
entially heated vertical cavity”, Journal of Fluid Mechanics, Vol. 201, pp.
379–410

Salinger, A., Lehoucq, R., Pawlowski, R. and Shadid, J. (2002a), “Computa-
tional bifurcation and stability studies of the 8:1 cavity problem”, Interna-
tional Journal of Numerical Methods in Fluids, accepted for publication

Salinger, A. G., Bou-Rabee, N. M., Pawlowski, R. P., Wilkes, E. D., Burroughs,
E. A., Lehoucq, R. B. and Romero, L. A. (2002b), “LOCA 1.0 Library of
continuation algorithms: Theory and implementation manual”, Technical
Report SAND2002–0396, Sandia National Laboratories, Albuquerque, NM

Shadid, J. (1999), “A fully-coupled Newton-Krylov solution method for paral-
lel unstructured finite element fluid flow, heat and mass transport”, IJCFD,

22



Vol. 12, pp. 199–211
Shadid, J., Tuminaro, R. and Walker, H. (1997), “An inexact Newton method

for fully coupled solution of the Navier-Stokes equations with heat and mass
transport”, Journal of Computational Physics, Vol. 137, pp. 155–185

Tukerman, L. S., Bertagnolio, F., Daube, O., Le Quéré, P. and Barkley, D.
(2000), “Stokes preconditioning for the inverse Arnoldi method”, Henry, D.
and Bayeon, A. (Eds.), “Notes on Numerical Fluid Mechanics”, Vol. 74

Tuminaro, R. S., Heroux, M., Hutchinson, S. A. and Shadid, J. N. (1999),
“Aztec user’s guide: Version 2.1”, Technical Report SAND99-8801J, Sandia
National Laboratories, Albuquerque, NM

van Dorsselaer, J. (1997), “Computing eigenvalues occuring in continuation
methods with the Jacobi-Davidson QZ method”, Journal of Computational
Physics, Vol. 138, No. CP975844, pp. 714–733
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